Did High Speed Rails Promote Local Economic Activities?: Application of Night Time Satellite Data

Kanghyock Koh¹ Hyunjoo Yang²

¹Korea University

²Incheon National University

11/15/2019

Motivation

- Cost of construction of Korean High Speed Rail (KTX) about \$ 27 billion USD (Yonhap News 2016.9.21.)
- Few studies evaluating the overall impacts of KTX on local economies
- Difficulty of doing empirical analysis at the sub-national level
 - Ideal data are regional level balanced panel data
 - Lack of county- or township-level GDP data
 - Lack of high frequency data
 - Frequent administrative unit changes

Contribution of this paper

Contribution of this paper

- Novel data set of 20-year balanced panel with a local economic activity measure
- Empirical analysis of the effects of KTX on local economic activity

Mixed evidence on the effects of High Speed Rail (HSR)

Positive impacts of HSR

- Better transportation infrastructure improves economic activities
- Housing boom and new industrial parks
- (Sands, 1993; Banister and Berechman, 2003; Kwon 2014)
- Increase in firm productivity (Baek and Park 2015)
- New entry of firms, employment, productivity (Kim and Ahn 2009, 2013; Ahn and Kim 2009)

Effects of High Speed Rail on Local Economic Activity

Negative impacts of HSR

- Economic activities being drained away from larger cities (Whitelegg and Holzapfel, 1993; Thompson, 1995; Vickerman, 1997)
- Cancer patients switch to hospitals in larger cities (Kim et al., 2010)
- \longrightarrow Empirical investigation is needed for assessing overall effects

Preview of Findings

 Introduction of the HSR system increases local economic activities of rural townships near HSR stations by 10% in 10 years

The KTX Network

Data

Township-level measure of economic activity

- National Oceanic and Atmospheric Administration (NOAA) Night Time Light Data from Defense Meteorological Satellite Program (DMSP), 1994-2013
- Reliable measure of local economic activities (Henderson et a. 2012; Donaldson and Storeygard 2016)
- lights-GDP elasticity of 0.3 (Henderson et a. 2012)
- About 600m × 600m pixel with light intensity 0-63
- Construction of a 20-year township level balanced panel data set

• 1,265 townships \times 20 years = 25,300 observations

Data (cont.)

- Construction of a 20-year township level balanced panel data set
 - 1,265 townships \times 20 years = 25,300 observations
- Distance between KTX stations and townships
 - Location of KTX stations are geo-coded using KTX line maps
 - Euclidean distance from the nearest KTX station
- Excluding Gangwon province, islands and urban districts

World GDP and Light Intensity 1992-2013

Source: Kyoochul Kim. (2017) North Korean Economy Seen from the Sky, *KDI Policy Research Series Working Paper*

Raw Satellite Images 1994 & 2013

Growth of Lights near Daegu & and Gimcheon

(d) 2004-2013

(c) 1994-2004

GIS data: vector and raster

Vector: points, lines, polygons

Raster: satellite images, altitudes, land cover

Create outcome variable:

Proxy for economic activity using night time satellite images

Data preparation - download data set from NOAA

d D C

□ @ ngdc.noaa.gov/eog/dmsp/downloadV4composites.html

6

NOAA NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION

IOAA > NESDIS > NCEL (formariv NGDC) > EDG

Atter .
Earth Observation Group
EOG Home.
DMSP Archive Description
Description of DMSP Sensors
Data Availability
Data Services and Pricing
Data Download
Online Maps and Web Services
Nighttime Lights Posters
Presentations
Publications
News & Media
Items of Interest
Documents About DMSP
Nighttime Lights Temporal Loops
Nightsat
McMurdo Ground Project Data Resources
FAQ

Version 4 DMSP-OLS Nighttime Lights Time Series

The files are cloud-free composites made using all the available archived DMSP-OLS smooth resolution data for calendar years. In cases where two satellites were collecting data - two c 30 arc second grids, spanning -180 to 180 degrees longitude and -65 to 75 degrees latitude.

More Information

Download Average Visible, Stable Lights, and Cloud Free Coverages || Download Average Lights X Pct

NOTE: Disk space required for compressed data is ~300 MB and uncompressed data is ~3 GB.

NOTE: These files are gzipped and added to tar files under linux. Winzip and some other windows utilities may convert newlines in the data into a windows linefeed. To avoid this in Win Miscelianeous and uncheck the TAR file samet CRUF conversion'.

Average Visible, Stable Lights, & Cloud Free Coverages									
Year\Sat.	F10	F12	F14	F15	F16	F18			
1992	F101992								
1993	F101993								
1994	F101994	F121994							
1995		F121995							
1996		F121996							
1997		F121997	F141997						
1998		F121998	F141998						
1999		F121999	F141999						
2000			F142000	F152000					
2001			F142001	F152001					
2002			F142002	F152002					
2003			F142003	F152003					
2004				F152004	F162004				
2005				F152005	F162005				
2006				F152006	F162006				
2007				F152007	F162007				
2008					F162008				
2009					F162009				
2010						F182010			
2011						F182011			
2012						F182012			
2013						F182013			

F15 2003 Nighttime Lights Composite

Data preparation - download QGIS software

QGIS

A Free and Open Source Geographic Information System

Create, edit, visualise, analyse and publish geospatial information on Windows, Mac, Linux, BSD (Android coming soon)

For your desktop, server, in your web browser and as developer libraries

Data preparation - load satellite images (drag and drop)

Q *Untitled Project - QGIS

Data preparation - download admin boundaries

1

통계지역경계

대상자료명	기준년도	자료형식	공개여부	대상지역	가격
센서스용 행정구역경계(전체)	2019,2018,2017,2016,2015,2014, 2013,2012,2011,2010,2009,2008, 2007,2006,2005,2004,2003,2002, 2001,2000,1995,1990,1985,1980, 1975	SHP	공개	전국	무료
센서스용행정구역경계(시도)	2019,2018,2017,2016,2015,2014, 2013,2012,2011,2010,2009,2008, 2007,2006,2005,2004,2003,2002, 2001,2000,1995,1990,1985,1980, 1975	SHP	공개	전국	무료
센서스용행경구역경계(시군구)	2019,2018,2017,2016,2015,2014, 2013,2012,2011,2010,2009,2008, 2007,2006,2005,2004,2003,2002, 2001,2000,1995,1990,1985,1980, 1975	SHP	공개	전국	무료
센서스용행정구역경계(읍면동)	2019,2018,2017,2016,2015,2014, 2013,2012,2011,2010,2009,2008, 2007,2006,2005,2004,2003,2002, 2001,2000,1995,1990,1985,1980, 1975	SHP	공개	전국	무료

Data preparation - load admin. boundaries (drag and drop)

Data preparation - zonal statistics

Parameters	Log			Zon	al	
Raster layer				stati	istics	
F18_2013	v4c_web_stable_lights [EPSG:4326]			This alg	gorithm	
Raster band				calculat	tes statis	tics of
Band 1 (Gray)			*	a raster feature	r layer to e of an	ir each
Vector layer c	ontaining zones			overlap	ping poly	ygon
BND_SIDO	PG_v2 [EPSG:5179]			vector	layer,	
Output ookim	profe					
output colum	prenx					
-	des de la					
Stausues to e	acuate					
1 options sele	cted		倦			
	Q Multiple selection	×				
	✓ Mean	Select All				
	✓ Count	Clear Selection				
	✓ Sum	Clear Selection				
	V Median	Toggle Selection				
	Min	OK				
	Max	Cancel				
	Range					
	Minority					
	Majority (mode)					
	Variance					
	All					
		0%				Cance

Data preparation - zonal statistics (results)

Q BND_SIDO_PG_v2 :: Features Total: 17, Filtered: 17, Selected: 1

1		8 8 8 8 9 7 2		E 9.						
	OBJECTID	BASE_YEAR	SIDO_CD	SIDO_NM	SIDO_NM_EN	_count	_sum	_mean	_median	_stdev
1		1 2015	11	서울특별시	Seoul	894.000000000	56146.00000000	62.80313199105	63.0000000000	0.922834383977
2		2 2015	21	부산광역시	Busan	1135.000000000	67250.00000000	59.25110132158	63.0000000000	7.227909448695
3		3 2015	22	대구광역시	Daegu	1268.00000000	60506.00000000	47.71766561514	54.0000000000	16.49799061204
4		4 2015	23	인천광역시		1701.00000000	72724.00000000	42.75367430922	48.0000000000	21.22525241581
5		5 2015	24	광주광역시	Gwangju	714.000000000	34614.00000000	48.47899159663	56.0000000000	16.07363068708
6		6 2015	25	대전광역시	Daejeon	781.000000000	37611.00000000	48.15749039692	55.00000000000	15.72016934716
7		7 2015	26	울산광역시	Ulsan	1526.000000000	61828.00000000	40.51638269986	41.00000000000	18.75221420622
8		8 2015		세종특별자치시	Sejong		25698.00000000	. 37.90265486725		13.69751044393
9		9 2015	33	충청북도	Chungcheong N.	10764.00000000	218648.0000000	20.31289483463	14.00000000000	16.03393769907
10		10 2015	34	충청남도	Chungcheong S.	12068.00000000	287709.0000000	23.84065296652	19.00000000000	14.95513834931
11		11 2015	35	전라북도	Jeolla N.	11518.00000000	233580.0000000	20.27956242403	15.0000000000	14.76021755640
12		12 2015	36	전라남도	Jeolla S.	18019.00000000	281761.0000000	15.63688328986	10.00000000000	13.94421573721
13		13 2015	37	경상북도	Gyeongsang N.	27540.00000000	462284.0000000	16.78591140159	11.00000000000	14.68771728295
14		14 2015	38	경상남도	Gyeongsang S.	15147.00000000	334136.0000000	22.05954974582	14.00000000000	17.92753745139
15		15 2015	39	제주특별자치도	Jeju	2635.000000000	51117.00000000	19.39924098671	14.00000000000	14.49779147588
16		16 2015	31	경기도	Gyeonggi	15284.00000000	627223.0000000	41.03788275320	45.00000000000	19.67272309940
17		17 2015	32	강원도	Gangwon	24930.00000000	296691.0000000	. 11.90096269554	8.000000000000	12.86967984535

Create explanatory variable:

Distance from the nearest KTX station

Data preparation - load ktx stations (digitization)

Q *Untitled Project - QGIS Project Edit View Layer Settings Plugins Vector Raster Database Web Mesh Processing Help - D = 目前回社 - | ① 参 タ タ 薄 段 段 没 治 治 場 場 値 2 - | 私 永 + 民 + 三 + 転 回 参 Σ = + - --- 回 + 4 4 V. / 4 10 1 # / 日本人日本大学部長公司日本人工= 4 1 4 年代年代年代 Browser 88 GOTTO Favorites Spatial Bookmarks A Home C:# 🔮 GeoPackage SpatiaLite PostGIS MSSOL Oracle DB2 CONVERSION (CONVERSION CONVERSION CONVERSIA CONVERSION CONVERSION CONVERSION CONVERSION CONVERSION 🔻 🐨 XYZ Tiles F bing aerial ESRI topo google roadmap google satellite google terrain OpenStreetMap stamen terrain WCS. Lavers A * 7 & * * * B ✓ ○ new ktx stn was ✓ BND SIDO PG v2 F18 2013 v4c web stable lights 63

Data preparation - create centroids for admin units

Calculate linear distance (Point A to Point B)

KTX stations are points but admin. units are not

 \rightarrow create points for admin units (centroids)

Data preparation - centroids for admin. units

Q *Untitled Project - QGIS

Data preparation - calculate linear distance (distance matrix)

Parameters Log Input point layer * admin.centroid [EPSG:5179] Selected features only Input unique ID field aec SDO_CD Target point layer * new_ktx_stn_wgs [EPSG:32652] Selected features only Selected features only Target point layer * Selected features only Selected features only Target unique ID field Target unique ID field	Q Distance Matrix	:
** admin.centroid [EPSG:5179] * â€[. This algorithm creates a table containing a distance matrix, with distances between all the points in a point	Parameters Log Input point layer	¹ Distance matrix
acc SDULD Itelepoints if a points if a point a layer. Target point layer	* admin_centroid [EPSG:5179] Selected features only Input unique ID field	Bel This algorithm creates table containing a distance matrix, with distances between all the noists is a noiste
Target unique ID field 123 Id Output matrix type Linear (N+k x 3) distance matrix Use only the nearest (k) target points 1 Create temporary layer) Create temporary layer Create temporary lay	accSUD_CD Target point layer [* new_ktx_stn_wgs [EPSG:32652] Selected features only	 The points if a points layer.
Output matrix type Linear (N*k x 3) distance matrix Use only the nearest (k) target points 1 Øistance matrix [Create temporary layer]	Target unique ID field	•
Use only the nearest (k) target points 1 Sistance matrix [Create temporary layer] Conservation: The after moving absorbitm	Output matrix type Linear (N*k x 3) distance matrix	•
Distance matrix [Create temporary layer]	Use only the nearest (k) target points 1	
	Distance matrix [Create temporary layer] [Create timp other subject also showithm	

Data preparation - distance matrix calculation results

🔇 distance_matrix :: Features Total: 17, Filtered: 17, Selected: 0								
/								
	InputID	TargetID	Distance					
1	21	40	5481.527122396					
2	11	49	1883.815571582					
3	29	22	9129.183636982					
4	32	49	118742.0085239					
5	26	29	8930.817285475					
6	25	43	2000.324040809					
7	24	38	4547.781472031					
8	36	24	22035.69575824					
9	35	36	23285.04105391					
10	34	42	37470.36517924					
11	33	22	46800.49058272					
12	31	49	18006.80122811					
13	39	39	156508.5493409					

26/57

Final step

- Export created tables to CSV / Excel file
- Merge using ids with Stata
- Repeat for other years

Raw Satellite Images 1994 & 2013

Growth of Lights near Daegu & and Gimcheon

(h) 2004-2013

(g) 1994-2004

Empirical Strategy

We use difference in differences approach

- Two groups
 - Treatment: townships "closer" to KTX station
 - Control: townships "further away" from KTX station
 - \blacktriangleright \longrightarrow definition of "closer" will be discussed
- Causal effect of treatment (introduction of KTX)
 - How economic activities of treatment group change compared to control group?
 - \longrightarrow Before and after the introduction of KTX
- Important assumption
 - The pre-trend of outcome should be parallel for both groups

Empirical Strategy - Model 1

Difference in differences approach (treatment = 0 or 1)

$$\begin{aligned} \text{LIGHT}_{k,m,t} &= \alpha_0 + \alpha_1 \text{TREAT}_{k,m} + \alpha_2 \text{POST}_t \\ &+ \alpha_3 \text{TREAT}_{k,m} \cdot \text{POST}_t \\ &+ X'_{k,m,t} \Psi + \tau_k + \epsilon_{k,m,t} \end{aligned}$$

- LIGHT_{k,m,t} = average light intensity of township m in county k, year t
- ► TREAT_{k,m} = 1 if KTX distance ≤ 34 kilometers (median value)
- $POST_t = post 2004 dummy$
- $\tau_k = \text{county fixed effects (No township effects yet)}$
- Distance measured from KTX stations in 2016
- Treatment was assumed to begin in 2004 (underestimated)

Identification

- Key identifying assumption: common trends
 - Trends of economic activity would be the same in both treatment and control groups in the absence of treatment (within the same county)
- Unobserved characteristics of rural units are inconsequential to the choice of routes
 - (Chandra and Thompson, 2000; Michaels, 2008; Redding and Turner, 2015)
- Endogenous selection of KTX stations
 - KTX stations were built where the increased economic activity is predicted
 - Policy makers to choose KTX stations in 1990 where the increase in economic activity in nearby townships would occur exactly 14 years later

Identification (cont.)

- 1. Did policy makers in 1990 predict the increased economic activity in 2004?
 - Planned operation year delayed multiple times due to financial constraints (Moon and Kim 2012)
 - Actual year of operation was 2004
- 2. Was the major determinant of the location of original KTX stations increased future economic activity? (Korea Rail Network Authority 2011; Moon and Kim 2012)

Not likely (e.g., Daejeon, Daegoo, Kyungjoo)

- 3. What about newly established KTX stations?
 - Began operation in 2010 (construction began in 2007, 2008)
 - New stations announced in 2003
 - Possible announcement effect (use Kangwon province to check)

Results 1

	(1)	(2)	(3)	(4)
treatment × post	2.3***	2.3***	2.3***	2.3***
	(0.28)	(0.27)	(0.55)	(0.55)
Observations	25,300	25,300	25,300	25,300
R-squared	0.15	0.21	0.59	0.63
County FE Covariate		Х	Х	X X

Table 1: Diff-in-Diffs Estimates of the Impact of the KTX on Light

Source: U.S. National Oceanic and Atmospheric Administration night time light data, 1994-2013. Standard errors are clusted at the county level.

*** p<0.01, ** p<0.05, * p<0.1.

KTX Distance and Light Intensity

Empirical Strategy - Model 2

Difference in differences approach (continuous treatment)

$$LIGHT_{k,m,t} = \delta_0 + \delta_1 DIST_{k,m} + \gamma_t + \sum_t \lambda_t DIST_{k,m} \cdot \gamma_t + X'_{k,m,t} \Theta + \sigma_k + \xi_{k,m,t}$$

- LIGHT_{k,m,t} = average light intensity in county k, township m, year t
- $DIST_{k,m} = KTX$ distance (kilometer)
- $\gamma_t =$ year fixed effects
- $\sigma_k = \text{county fixed effects}$

Results 2

	(1) Coeff.	(1) S.E.	(2) Coeff.	(2) S.E.
1995	0.00	0.02	0.00	0.01
1996	-0.01	0.02	-0.01*	0.01
1997	0.01	0.01	0.01	0.01
1998	0.01	0.01	0.01**	0.01
1999	0.01	0.02	0.01	0.01
2000	-0.02	0.02	-0.02***	0.01
2001	-0.04**	0.02	-0.04***	0.01
2002	-0.04**	0.02	-0.04***	0.01
2003	-0.01	0.01	-0.01	0.01
2004	-0.03*	0.02	-0.03**	0.01
2005	-0.01	0.02	-0.01	0.01
2006	-0.03*	0.02	-0.03**	0.01
2007	-0.05***	0.02	-0.05***	0.01
2008	-0.05***	0.02	-0.05***	0.01
2009	-0.06***	0.02	-0.06***	0.01
2010	-0.09***	0.02	-0.09***	0.02
2011	-0.09***	0.02	-0.09***	0.01
2012	-0.07***	0.02	-0.07***	0.02
2013	-0.08***	0.02	-0.08***	0.02
Observations	25,300		25,300	
R-squared	0.21		0.70	
County FE			Х	
Covariate			Х	

Source: U.S. National Oceanic and Atmospheric Administration night time light data, 1994-2013. Standard errors are clusted at the county level. *** p<0.01, ** p<0.05, * p<0.1.

Falsification Checks

- Increased economic activities near rail stations after 2004
- Use Gangwon Province without any KTX connections
 - Distance to major rail stations and future KTX stations
- Use Jeju Island
 - Proximity to Jeju International Airport

Results 2

Conclusions

Summary

- Evaluation the impact of HSR system on local economic activity
- Introduction of novel panel data on local economic activity

Future work

Economic growth or reorganization?

Currently collecting data on population, business, etc.

- Mechanisms?
 - Housing booms, new jobs, region-based policies
 - Entry of firms, employment, productivity
 - Plan to use population and land price data
- From light intensity to \$ value

Medical accessibility: trauma centers

44/57

강릉시 유천동 (평창올림픽 이전과 이후)

행안부 건물 데이터를 통해 올림픽 이후 새로 생긴 건물 identify

46/57

행안부 건물 데이터를 통해 올림픽 이후 새로 생긴 건물 identify

250 500 m

Digitizing 1918 road networks & NKPA attack routes

48/57

Burchfield et al. 2006. QJE

Urban expansion in Miami (1976-1992)

Urban land built 1976–92

Water

Bare rock and sand

49/57

Marx et al. 2019. AEJ: Applied Economics

Roof types as a proxy for poverty

Appendix Figure A2: Old and New Roofs in Kibera

Note: Both pictures are taken over the same area of the slum with the same resolution (0.5 meters panchromatic).

The picture in the left panel was taken in July 2009 and that in the right panel in August 2012.

The yellow rectangles highlight clusters of roofs that markedly evolved over the period.

Roofs highlighted in the bottom rectangle degraded while roofs within the top rectangle were upgraded in the same timeframe.

The picture area is approximately 175 meters long and 140 meters wide.

Shiny new roofs v.s. old roofs in villages in Kenya

Varshney et al. 2015. Big Data

FIG. 1. Sample satellite image patches of the region with (a) thatched roofs in the center and (b) a metal roof in the center.

Varshney et al. 2015. Big Data

FIG. 3. Estimated proportion of roofs that are metal per village.

RESEARCH

RESEARCH ARTICLES

ECONOMICS

Combining satellite imagery and machine learning to predict poverty

Neal Jean,^{1,2*} Marshall Burke,^{3,4,5*+} Michael Xie,¹ W. Matthew Davis,⁴ David B. Lobell,^{3,4} Stefano Ermon¹

Reliable data on economic livelihoods remain scarce in the developing world, hampering efforts to study these outcomes and to design policies that improve them. Here we demonstrate an accurate, inexpensive, and scalable method for estimating consumption expenditure and asset wealth from high-resolution satellite imagery. Using survey and satellite data from five African countries—Nigeria, Tanzania, Uganda, Malawi, and Rwanda—we show how a convolutional neural network can be trained to identify image features that can explain up to 75% of the variation in local-level economic outcomes. Our method, which requires only publicly available data, could transform efforts to track and target poverty in developing countries. It also demonstrates how powerful machine learning techniques can be applied in a setting with limited training data, suggesting broad potential application across many scientific domains.

Jean et al. 2016. Science

Fig. 2. Visualization of features. By column: Four different convolutional filters (which identify, from left to right, features corresponding to urban areas, nonurban areas, water, and roads) in the convolutional neural network model used for extracting features. Each filter "highlights" the parts of the image that activate it, shown in pink. By row: Original daytime satellite images from Google Static Maps, filter activation maps, and overlay of activation maps onto original images

Jean et al. 2016. Science

Fig. 3. Predicted cluster-level consumption from transfer learning approach (y axis) compared to survey-measured consumption (x axis). Results are shown for Nigeria (A). Tanzania (B). Uganda (C). and Makwi (D). Predictions and reported r² values in each panel are from fivefold cross-validation. Black line is the best fit line, and red line is international poverty line of \$1.90 per person per day. Both axes are shown in logarithmic scale. Countries are ordered by population size.

Naik et al. 2017 PNAS

Naik et al. 2017 PNAS

