Towards administrative innovation in the public sector: A policy informatics approach

Graduate School of Management of Technology Sogang University

Changyong Lee, Ph.D.

Email: changyong@sogang.ac.kr

Contents

I. Introduction

- 1. About me
- 2. Policy informatics
- 3. Al and machine learning

II. Expert-machine collaboration for decision making

- 1. Research background and problem
- 2. Data and methodology
- 3. Empirical analysis and results
- 4. Potential applications

III. Mismatch between the supply and demand

- 1. Research background and problem
- 2. Data and methodology
- 3. Empirical analysis and results
- 4. Potential applications

IV. Opinion mining, sentiment analysis, and simulation

- 1. Opinion mining for agenda setting
- 2. Sentiment analysis for agenda setting and policy evaluation
- 3. Simulation for policy evaluation
- 4. Chatbot for policy implementation

V. Conclusion

1. Challenges and paths to the next stage

I. Introduction

1. About me

Education

- PhD in Industrial Engineering
- BS in Computer Science (Minor in Industrial Engineering)

Work experience

- Ulsan National Institute of Science and Technology
- Korea Institute of Science and Technology Information
- Centre for Technology Management, University of Cambridge

Research interests

- Policy informatics and data-driven policy evaluation (e.g., forecasting, evaluation, and planning in the public sector)
- Industrial policy (e.g., sustainability of small and medium enterprises)
- Applied machine and deep learning (e.g., prognostics and health management of complex systems and high-frequency trading in market-making contexts)

1. About me

Major research topics

[Identification]
Customer and market needs
and emerging technologies

Matchmaking]
Disparate databases and supply and demand

[Association/

Products, services, technologies, businesses, and scenarios

[Alternatives/

Recommendation]

Decision making]Attractiveness, risk,
uncertainty, and satisfaction

[Evaluation/

[Planning]
Technology and business roadmaps

detection]
Outliers and abnormal events

[Monitoring/

[Forecasting]
Likelihood and timing

[Review/Insight]
Implications, challenges,
and research agenda

Origin and development

1940: Simon – Role of information in decision making

1980: Carnegie Mellon IT Concentration in Public Administration

1985: SUNY-Albany IT policy program (Rockefeller School) launched

2000: E-Governance model developed

Carnegie Mellon University (Master of Science in Public Policy & Management – Data Analytics Track)

Northwestern University (Master in Public Policy & Administration – Data Analytics for Public Policy Specialization)

...

University of Chicago (Master of Science in Computational Analysis & Public Policy)

1970

1974 – 1992: UC Irvine focuses on interaction of technology, organization, and politic 1983: Syracuse's
Maxwell School
launches
information
management track
in MPA program

1984 – 1992: Development of information resource management perspective 2006: Arizona State University launches first US program in policy informatics

2008

6

Assumption

More intensive and creative use of information and technology >
 More effective policy-making processes and better policy choices

Definition

 A transdisciplinary study of how to use information and computation to understand and tackle complex problems of society

Relevant disciplines

Example

Impact of social distancing on the spread of coronavirus

Current trends shaping policy informatics

 Disruptive technologies combined with a paradigm shift towards more citizenand needs-driven developments in all phases of the policy life cycle

Public value expectations along policy life cycle

Agenda setting

- Evidence-based
- Citizen involvement
- Balancing of interests
- Efficiency and speed

Policy evaluation

- Evidence-based
- Fairness
- Accountability
- Continuous and real-time

Policy formulation and decision making

- Timeliness
- Reliable and robust
- Efficiency and flexibility

Policy implementation

- Protection of individual rights
- Transparency and equal access
- Cost savings and productivity gains
- Fairness and responsiveness

3. Al and machine learning

Definition of machine learning

- A computer program is said to "learn" from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with E.
- A "machine learning algorithm" is an algorithm that is able to learn from data
 - ✓ Machine learning = Learning from E in form of Data
 - ✓ Induction over large-scale data
- Al vs. machine learning vs. deep learning

3. Al and machine learning

Use of AI in the public sector

분야	예시
교통	 자율주행자동차, 셔틀(교통 체증, 사고 해소) 항공, 해운 활용
스마트시티	 효율적 도시 관리(지능형 교통 시스템) CCTV를 활용한 안전사회 구현 및 법 집행(치매, 실종유아 등 찾기;과기정통부)
의료관리	• 정밀의료, 처방, 신속한 진단
사이버 보안	• 해킹 등 위험 발굴 및 대응
금융	 보이스피싱 탐지 및 차단기술의 활용(한국 연간 6조 피해) 신용위기 분석(한국 부동산 정보 활용) 한국은행 금리결정 도입시 활용 검토
안보	• 신병 모집 시 Chatbot 활용(美)
사법서비스	• 빅데이터 분석에 의한 판결
자연재해	• IBM, OmniEarth 캘리포니아 가뭄 해결 시도(수요 예측 등)
통계	• 빅데이터 분석에 기반한 인구통계 처리 등

II. Expert-machine collaboration for decision making

Korea Invention Promotion Association

SMART3 for technology valuation

- Korea Technology Finance Corporation
 - KTRS for technology valuation

- Ministry of Science and ICT
 - R&D PIE for R&D investment

Motivation

- High level of uncertainty and complexity associated with technology valuation
- Previous models relying solely on black-box models

Objective

 To develop an analytical framework for successful expert-machine collaborations for technology valuation using interpretable machine learning models

High-level description of the data and machine learning models

^{*:} SHapley Additive exPlanation

Data

- Technology transaction database
 - ✓ A full sample of inventions that were disclosed to the Office of Technology
 Licensing of Stanford University from January 1970 to July 2014
 - ✓ To measure technology value and marketing activities
- Patent database
 - ✓ To measure technological characteristics

Category	Subcategory	Economic value	Number of technologies
Tions 1(T)	Highly valuable (L1)	Above \$500,000	68 (4.14%)
Licensed (L)	Valuable (L2)	0-\$500,000	768 (46.74%)
Not licensed (NL)		0	807 (49.12%)
Sum			1,643 (100%)

Summary of the features of technological characteristics

Category	Data source	Feature	Operational definition	References
Technological	Patent database	Technology age (TA)	The amount of time between a technology being registered in the OTL and	Fischer and Leidinger
novelty and			being licensed (or the current time)	(2014)
originality		Prior knowledge (PK)	Number of backward citations of the patents for a technology	Harhoff et al. (2003)
		Scientific knowledge (SK)	Number of non-patent literature references of the patents for a technology	Callaert et al. (2006)
		Technology cycle time (TCT)	Median age of cited patents	Bierly and Chakrabarti (1996)
		Main class-level originality (MCO)	Herfindahl index on classes of cited patents	Bessen (2008); Jaffe and Trajtenberg
		Subclass-level originality (SCO)	Herfindahl index on mainline subclasses of cited patents	(2002)
		Examination time (ET)	Time difference between the first patent publication and the patent	Higham et al. (2021)
			application	
Technological scope	Patent database	Patent count (PC)	Number of patents for a technology	Hirschey and Richardson (2004)
		Main class count (MCC)	Number of main classes of the patents for a technology	Lerner (1994)
		Subclass count (SCC)	Number of mainline subclasses of the patents for a technology	
	Technology transaction database	Bio science relevance (Bio)	1 if a technology is related to bio science, otherwise 0	-
Technological	Patent database	Independent claims (IC)	Number of independent claims of patents for a technology	Lanjouw and
superiority		Dependent claims (DC)	Number of dependent claims of patents for a technology	Schankerman (2001)
	Technology transaction database	Federal government fund (FGF)	1 if technology development is funded by federal governments, otherwise 0	Corredoira et al. (2018)
		Edison awards winner (EAW)	1 if a technology wins the Edison awards, otherwise 0	-
Market coverage	Patent database	Patent family (PF)	Number of patents registered in multiple countries with the coverage of the same invention	Gullec and Potterie (2000)
Č	Technology transaction database	Application area (AA)	Number of potential application areas of a technology	-
Development efforts and	Patent database	Human resources (HR)	Number of inventors of the patents for a technology	Ma and Lee (2008)
capabilities		Collaboration (Col)	1 if patents for a technology have more than one assignee, otherwise 0	Ma and Lee (2008)
Sponsorship	Technology	Sponsors (Spon)	Number of sponsors for technology development	Wright et al. (2014)
and marketing	transaction database	Recipients (Recip)	Number of marketing recipients	-

Methodology

- Five machine learning models for assessing the economic value of technologies
 - ✓ Multi-layer perceptron (MLP)
 - ✓ Support vector machine (SVM)
 - ✓ Factorization machine (FM)
 - ✓ Random forest (RF)
 - ✓ Extreme gradient boosting (XGBoost)

Methodology

SHAP for interpreting the models' mechanisms and behaviors

Results of technology valuation using machine learning models

Technology ID	Techn	ological	charact	eristics		(Actual) Economic	(Predicted) Economic value									
	TA	PK		Spon	Recip	value	MLP		SVM		FM		RF		XGBoost	
00-003	20	2		2	368		L	L2	L	L2	L	L2	L	L2	L	L2
00-009	191	21		1	1367		NL	-	NL	-	NL	-	NL	-	NL	-
00-010	206	5		1	7		NL	-	NL	-	NL	-	NL	-	NL	-
00-045	-1	44.5		2	131		L	L2	L	L1	L	L2	L	L2	L	L1
02-164	6	12		1	6		L	L2	L	L1	L	L2	L	L2	L	L2
02-166	-3	6		1	0		L	L2	L	L2	L	L2	L	L2	L	L2
02-170	206	4		1	2		NL	-	NL	-	NL	-	NL	-	NL	-
02-181	50	2		1	78		L	L2	L	L1	L	L2	L	L2	L	L1
99-220	154	18		1	151		NL	L2	L	L2	NL	L2	NL	L2	NL	L2
99-231	-3	7.33		5	3	_	L	L2	L	L2	L	L1	L	L2	L	L1
99-236	202	2		1	158		NL	-	NL	-	L	L2	NL	-	NL	-

Results of technology valuation using machine learning models

Technology ID	Technological characteristics					(Actua Econo	,	(Predicted) Economic value									
	TA	A PK		Spon	Recip	value	value		MLP		SVM		FM			XGBoost	
00-003	20	2		2	368	L	L2	L	L2	L	L2	L	L2	L	L2	L	L2
00-009	191	21		1	1367	NL	-	NL	-	NL	-	NL	-	NL	-	NL	-
00-010	206	5		1	7	NL	-	NL	-	NL	-	NL	-	NL	-	NL	-
00-045	-1	44.5		2	131	L	L1	L	L2	L	L1	L	L2	L	L2	L	L1
02-164	6	12		1	6	L	L1	L	L2	L	L1	L	L2	L	L2	L	L2
02-166	-3	6		1	0	L	L2	L	L2	L	L2	L	L2	L	L2	L	L2
02-170	206	4		1	2	NL	-	NL	-	NL	-	NL	-	NL	-	NL	-
02-181	50	2		1	78	L	L1	L	L2	L	L1	L	L2	L	L2	L	L1
99-220	154	18		1	151	L	L2	NL	L2	L	L2	NL	L2	NL	L2	NL	L2
99-231	-3	7.33		5	3	L	L2	L	L2	L	L2	L	L1	L	L2	L	L1
99-236	202	2		1	158	NL	-	NL	-	NL	-	L	L2	NL	-	NL	-

Summary of performance evaluation

Model	Level of analysis	Accuracy	Precision	Recall	Specificity	F1 score
MLP	L vs. NL	0.93	0.97	0.90	0.97	0.93
MLP	L1 vs. L2	0.90	0.22	0.10	0.97	0.14
CMM	L vs. NL	0.56	0.54	1.00	0.10	0.70
SVM	L1 vs. L2	0.92	0.00	0.00	1.00	0.00
FM	L vs. NL	0.90	0.88	0.93	0.87	0.91
r IVI	L1 vs. L2	0.84	0.21	0.34	0.89	0.26
DE	L vs. NL	0.95	0.97	0.93	0.97	0.95
RF	L1 vs. L2	0.92	0.33	0.03	0.99	0.05
VCDaart	L vs. NL	0.94	0.97	0.91	0.97	0.94
XGBoost	L1 vs. L2	0.73	0.20	0.75	0.73	0.31

SHAP values for technology valuation

Feature importance

Summary plot (L vs. NL)

Bar plot (L vs. NL)

Feature importance

Summary plot (L1 vs. L2)

Bar plot (L1 vs. L2)

Feature dependence and interaction

Dependence plot of TA (L vs. NL)

Dependence plot of PC (L1 vs. L2)

4. Potential applications

- Decision making under the high level of complexity and uncertainty
 - Inspection and audit

Resource allocation

III. Mismatch between the supply and demand

- Ministry of Trade, Industry and Energy
 - National Tech-bank

- Korea Technology Finance Corporation
 - TechBridge

Background

- Increasing importance of university-industry-government interactions
- Necessities of developing systematic approaches to matchmaking in technology licensing contexts

Motivation

- Disparity between technical and business languages
- → 기업은 생산 현장에서 발생하는 안전사고 감소 방법을 요구
- → 모션 탐지 기술을 보유한 연구자 추천
- No perfect match between the technological functions and business requirements
- → 기업은 참외를 5mm로 깍는 방법을 요구
- → 사과를 3mm로 깍는 기술을 보유한 연구자 추천

Objective

 To develop an analytical framework for inventor-licensee matchmaking in university technology licensing contexts based on representation learning

Data

- Patent, publication, and project databases
 - ✓ To measure technological functions that inventors can offer
- Business requirement database
 - ✓ To measure business requirements that licensees demand
- Technology and know-how licensing databases
 - ✓ To assess the performance and utility of the proposed approach
- Methodology: Representation learning (e.g., fastText and BERT)

Matching rate at the inventor level

Number of inventors recommended

Matching rate at the department level

4. Potential applications

Various types of mismatches between the supply and demand

구직자데이터분석 및

채용공고와 자동매칭

*특허출원번호:

제2017-0103041호

Labor market mismatch

 01
 02
 03

 ●
 ●
 ●

 10초간편 이력정보등록서비스
 구직자 데이터
 기술자숲 BIG DATA 기반 스마트매칭알고리즘

자격증, 경력, 지역,

관심직무 등

구직자데이터확보

찰칵, 종이이력서

사진을 찍으면

자동으로 완성되는 종이이력서

온라인변환 대행서비스

Complaint-solution mismatch

1. Opinion mining for agenda setting

Identifying new service opportunities from large scale documents

2. Sentiment analysis for agenda setting and policy evaluation

Assessing service quality using customer reviews

3. Simulation for policy evaluation

Energy security management model using system dynamics

4. Chatbot for policy implementation

Sentence BERT* practice

```
return_answer('안녕~ 반가워!')
        '안녕하세요.'
       return_answer('너 말 잘한다')
       return_answer('나랑 커피마실까?')
        '좋은 시간 보내시길 바라요.'
Out[10]:
       return_answer('아인이는 너무 귀여워')
        '귀여운 사람이 말해서 그래요.'
       return_answer('나는 2022년도 3월부터 서강대 MOT 대학원에서 공부를 시작해~')
        '꿈에 도전하는 건 좋은 거라고 들었어요.'
Out[12]:
       return_answer('의사결정 지원을 위한 인공지능의 활용 수업은 어려울까?')
        '나한테 맞는 공부 방법 찾는 게 시급하네요.'
In [14]: return_answer('열심히 하면 잘할수 있겠지?')
        '인내의 시간이 필요할 거예요.'
Out[14]:
       return_answer('A+ 받자! 화이팅!')
       '성공을 기원합니다.'
```

⁴²

IV. Conclusion

1. Challenges and paths to the next stage

- Development of guidelines on using AI in the public sector
 - Understanding AI
 - ✓ How AI can help
 - ✓ What AI cannot do
 - Assessing if AI is the right solution
 - ✓ Public value, ethics, fairness, safety, and privacy
 - Planning and preparing for AI-based public service development
 - ✓ Robust data governance principles (quality, standards, and integration)
- Humanistic social science-centered X+AI rather than AI+X approach

Thank you

Graduate School of Management of Technology Sogang University

Changyong Lee, Ph.D.

Email: changyong@sogang.ac.kr