Determinants of collaboration of government organizations: based on Agent–based Modeling Simulation

Focus countries for USAID's Emerging Pandemic Threats program.

Table of Contents

- 2. Theoretical Background
- 3. Research Design
- 4. Agent-based model simulation
- 5. Plans for the 2nd year study

 Checking the potential of the Agent-based Modeling Simulation in public policy analysis

• Resource Dependency Theory vs. Resource Based Theory

• Comments for the 2nd year study

Structure of the 1st year study

Chapter 2 Theoretical Background

- we are now facing a variety of policy challenges as we experience COVID-19
- "compelling global wicked problem"
- High level of volatility, uncertainty, complexity, ambiguity

01

Policy Wicked Problem and Collaboration

9

PEST	Category	Description	
Political	politics	Reconsidering democracy	
		Establishment of nation-centrism and the emergence of closed cities	
	National security	Weakening of international cooperation and collaboration New Cold War (US vs. China)	
		4 th Industrial revolution and international competition	
		US-China trade conflict	
Economic	economics	Protectionism	
		Global economic downturn and unemployment problem	
	industry	4 th Industrial revolution and industry structure	
		reorganization	
		Growth of ICT-based new industries	

PEST	Category	Description	
		Strengthening social safety nets and	
	Cocial walfare	increasing the need for support for	
	Social wellare	the vulnerable people	
		Community-centered care	
Social	Social	Un-tact education and equity	
	education	New technology utilization and	
		training	
		Change of the culture industry	
	culture	environment	
		Community-centered culture industry	
		Acceleration of new industries and	
Technological —	Science and	new technologies	
	technology	Privacy and digital ethics	
	Energy and	Climate Change	
	environment	Renewable energy developmenmt	

RBT vs. RDT

Korea Institute of Public Administration

- firm's internal resources and capabilities are key drivers of its competitive advantage and longterm success
- Emphasizes the importance of identifying and managing a firm's resource and capabilities
- Internal readiness for collaboration
- organization depends on external resource to survive and thrive
- organization is influenced by the availability, accessibility, and control of external resources
 - External support for collaboration

03

Agent-based Modeling

- An agent-based model is a type of computational model that simulates the behavior of individual agents and their interactions within a complex system
- The ABM model consists of multiple autonomous agents, each of which has its own set of rules and decision-making processes
- These agents interact with each other an d their environment according to specifi ed rules and parameters, allowing rese archers to observe emergent properties and patterns that arise from the intera ctions of the agents

- Agent-based Modeling can be used in the following situations:
- If the heterogeneity of the agents is important
- If the interaction between the agents is complex
- ③ If the agent's behavior shows complex patterns, such as learning

03

Korea Institute of Public Administration

ABM components	Explanation	In my study
Composition	a collection of the parts of the system	47 ministries and agencies in Korean central government
Environment	a collection of items other than those in s, on which s can act or be acted upon	Characteristics of external environment
Structure	a collection of relations that keep the system whole	Network, Characteristics of organization and related policies
Mechanism	a collection of processes that allows to perform its specific function	Collaborative behavior decision making process (1 st stage-4 th stage)
Emergence	Output	Network strength Network structure

Agent-based Modeling

문재인 정부 조직 개편

18부처 5처 17청, 2원 4실 6위원회(52개) > 18부 4처 18청 7위원회, 2원 4실 1처(54개)

Chapter 3 ABM Research Design

Korea Institute of Public Administration

Korea Institute of Public Administration

Readiness (1 st stage)	•Deciding whether participate the game or not • R_{ij} = readiness score of factor j of organization i •If sum of $R_{ij} \ge$ certain level, then organization i will decide to search possible partners	• $R_{ij} = I_{ij} + E_{ij}$ • $I_{ij} = incentive_i + monitoring_i + leadership_i + budget_i + preference_i + weight_i$ • $E_{ij} = president_i + neighbor_i$
Partner selection (2 nd stage)	•Seeking and selecting possible partners • P_{ij} = probability that organization i will meet organization j • P_{ji} = probability that organization j will meet organization i •If $P_{ij} + P_{ji}$ > certain level, then organization i and organization j will meet	• N= a set of competing organizations • $S_j = \text{attractiveness of organization I}$ • $S_j = \text{attractiveness of organization I}$ • $S_j = \text{incentive}_i + \text{monitoring}_i + \text{leadership}_i + \text{budget}_i + \text{preference}_i$ + weight _i • $T_{ij} = \text{network (psychological distance)}$ between org i and j
BC calculation (3 rd stage)	 Calculate the expected benefit of collaborative behavior <i>E</i>(<i>B</i>)_{<i>it</i>} and cost <i>E</i>(<i>C</i>)_{<i>it</i>} at time t of organization I Benefit and Cost are measured using different scenarios depending on the types of collaborative behavior (Collaboration, Cooperation, Coordination) 	 <i>E</i>(<i>C</i>)_{<i>it</i>} =Lost Opportunity cost <i>E</i>(<i>B</i>)_{<i>it</i>} =estimated benefit of collaboration
Decision making	 If E(B)_{it} > E(C)_{it}, organization i will decide to collaborate The result is reflected in N_i in the 1st stage and T_{ij} in the 2nd stage If collaboration failed, neighbor_i, T_{ij} 10% reduction 	• If $E(B)_{it} > E(C)_{it}$ and • $E(B)_{jt} > E(C)_{jt}$ • collaboration

3 Defining Sub-models (1): readiness

- If sum of (survey) score of readiness (R_{it}) is greater than 'certain level', the organization i will decide to participate the game and search partners
- 'Certain level' will be decided by considering the distribution of survey data
- $R_{it} = I_{it} + E_{it}$
- $I_{it} = (incentive_{it} + monitoring_{it} + leadership_{it} + budget_{it})/4$
- $E_{it} = (president_{it} + neighbor_{it})/2$
- To calculate *neighbor_i*, convert the sum of the network strengths (frequency of contact) of organization i with other 46 organizations

03

Defining Sub-models (2): partner selection

- N= a set of competing organizations
- S_j = attractiveness of organization j
- T_{ij} = network strength between org i and j

$$P_{ij} = \frac{\frac{Sj}{T_{ij}^a}}{\sum_{j=1}^n \frac{S_j}{T_{ij}^a}}$$

- T_{ij} = frequency of contact (will measure the network strength of organization i with other 46 organizations)
- If $P_{ij} + P_{ji}$ > certain level, then organization i and organization j will meet

03

Defining Sub-models (3): BC calculation

- $E(C)_{it}$ =Lost Opportunity cost of collaboration
- $E(B)_{it}$ = estimated benefit of collaboration
- If $E(B)_{it} > E(C)_{it}$ and
- $E(B)_{jt} > E(C)_{jt}$
- The counted collaborative behavior is reflected in T_{ij} in the 2nd stage and in *neighbor_i* in the 1st stage
- If collaboration failed, *neighbor*_i (1st stage), T_{ij} (2nd stage) 10% reduction
- If collaboration succeed, *neighbor*_i, T_{ij} 10% rise
- Repeated game
- Calculating and measuring various types of collaboration (cooperation, collaboration, coordination)

Chapter 4 Agent-based Modeling Simulation

ABM Simulation

• Tick=300

• Tick=300

22

ABM Simulation

⁰² Structure of collaboration (2): Internal

- I (Internal)=90%
- E (External)=100%
- Tick=300

- I (Internal)=100%
- E (External)=100%
- Tick=300

- I (Internal)=110%
- E (External)=100%
- Tick=300

ABM Simulation

Korea Institute of Public Administration

03

Strength of collaboration (1): External vs. Internal

- Strength of collaboration is stronger when External factors (E) is 110% than when Internal factors (I) is 110% (see the green graphs)
- Government organizations are more sensitive in External factors such as the support from the President's Office than the Internal factors

Chapter 5 Possible researches and Plans for the 2nd year study

• Data science

- Call Detail Records (CDRs) for cell phone usages, combined with the demographic information, have helped reveal communication structure of people and the impact of the demographics on the communication patterns.
- Mobility datasets (e.g., LODES data of USA) have been analyzed to reveal human mobility patterns on the regional and inter-regional scales.

Network science

- Network = nodes + links
- Recent focus on temporal networks that can be seen as either time series of network or network of time series.
- Analysis of the temporal patterns can help "predict" the future of the system (e.g., link prediction for spreading of COVID-19).
- Implication for policy-making
 - Better policies based on understanding fundamental mechanisms of complex social systems and with help of computational model simulations?

Other related topics by Hang-Hyun Jo

Korea Institute of Public Administration

Plans for the 2nd study

Persisting

Wicked Problem

Deepening

Wicked Problem

Forthcoming

Wicked Problem

Step 1: Categorizing categorizing policy wicked problems

- Exist now, does not change significantly in the future
- e.g., national security, housing, welfare
- Exist now, expected to be more serious and intensified in the future
- e.g., energy, employment, urban-rural disparity
- Unprecedented problems never experienced before
- e.g., climate change, pandemic

Step 2: Building

- Building and structuring algorithms for each type of policy wicked problems
- Selecting possible (various types of) agents, the process of decisionmaking based on indepth interview
- Central government, local government, NGO, civil society, public firms

Step 3: Simulation

- Python-based simulation
- Will try to adopt various characteristics of collaboration
- Collaboration, cooperation, coordination..

complex, uncertain, ambiguous

THANK YOU

